Refocusing of Moving Targets in SAR Images via Parametric Sparse Representation

نویسندگان

  • Yi-Chang Chen
  • Gang Li
  • Qun Zhang
  • Jinping Sun
چکیده

In this paper, a parametric sparse representation (PSR) method is proposed for refocusing of moving targets in synthetic aperture radar (SAR) images. In regular SAR images, moving targets are defocused due to unknown motion parameters. Refocusing of moving targets requires accurate phase compensation of echo data. In the proposed method, the region of interest (ROI) data containing the moving targets are extracted from the complex SAR image and represented in a sparse fashion through a parametric transform, which is related to the phase compensation parameter. By updating the reflectivities of moving target scatterers and the parametric transform in an iterative fashion, the phase compensation parameter can be accurately estimated and the SAR images of moving targets can be refocused well. The proposed method directly operates on small-size defocused ROI data, which helps to reduce the computational burden and suppress the clutter. Compared to other existing ROI-based methods, the proposed method can suppress asymmetric side-lobes and improve the image quality. Both simulated data and real SAR data collected by GF-3 satellite are used to validate the effectiveness of the proposed method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deblocking Joint Photographic Experts Group Compressed Images via Self-learning Sparse Representation

JPEG is one of the most widely used image compression method, but it causes annoying blocking artifacts at low bit-rates. Sparse representation is an efficient technique which can solve many inverse problems in image processing applications such as denoising and deblocking. In this paper, a post-processing method is proposed for reducing JPEG blocking effects via sparse representation. In this ...

متن کامل

Fusion of Thermal Infrared and Visible Images Based on Multi-scale Transform and Sparse Representation

Due to the differences between the visible and thermal infrared images, combination of these two types of images is essential for better understanding the characteristics of targets and the environment. Thermal infrared images have most importance to distinguish targets from the background based on the radiation differences, which work well in all-weather and day/night conditions also in land s...

متن کامل

SAR Imaging of Moving Target based on Knowledge-aided Two-dimensional Autofocus

Due to uncertainty on target's motion, the range cell migration (RCM) and azimuth phase error (APE) of moving targets can't be completely compensated in synthetic aperture radar (SAR) processing. Therefore, moving targets often appear two-dimensional (2-D) defocused in SAR images. In this paper, a 2-D autofocus method for refocusing defocused moving targets in SAR images is presented. The new m...

متن کامل

Fast Reconstruction of SAR Images with Phase Error Using Sparse Representation

In the past years, a number of algorithms have been introduced for synthesis aperture radar (SAR) imaging. However, they all suffer from the same problem: The data size to process is considerably large. In recent years, compressive sensing and sparse representation of the signal in SAR has gained a significant research interest. This method offers the advantage of reducing the sampling rate, bu...

متن کامل

Modeling the potential of Sand and Dust Storm sources formation using time series of remote sensing data, fuzzy logic and artificial neural network (A Case study of Euphrates basin)

Due to the differences between the visible and thermal infrared images, the combination of these two types of images leads to better understanding of  the characteristics of targets and the environment. Thermal infrared images are really in distinguishing targets from the background based on the radiation differences and  land surface temperature (LST) calculation. However, their spatial resolu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Remote Sensing

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2017